Formula Purposes & Benefits |
Elderberry Immunity with Zinc and Vitamin C is formulated to support immune health, cardiovascular health, skin health, and energy production. |
Formula Ingredient Deck | Benefits Of Each Ingredient |
Vitamin C (Acerola Cherry) |
|
Vitamin B-12 (Methylcobalamin) |
|
Zinc |
|
Elderberry Extract |
|
Magnesium (di magnesium malate) |
|
Calcium |
|
Vitamin D3 |
|
Potassium |
|
Pink Himalayan Salt |
|
Proper Use of This Supplement |
Suggested Use: Mix one (1) scoop into 6-8 ounces of your favorite non-citrus juice, water, smoothie or protein shake. For best taste mix into filtered water and add a splash of apple juice. |
Our Formula Vs Other Formulas on the Market | |
1. Uses third party independently tested ingredients that are made in the USA, GMP certified, and made in an FDA registered facility. | 1. Source cheap ingredients from heavily polluted soils. Even “organic” supplements not third party tested have been removed by FDA due to high levels of heavy metals. |
2. Uses over 1,000mg of Elderberry, 1500 IU of Vitamin D, whole food vitamin C, 11 mg of Zinc, flavored with stevia and pink Himalayan salt in an effective evidence based and efficaciously dosed formula. | 2. Uses cheap and low dose formulas of elderberry, vitamin c, vitamin D, Zinc, and magnesium that contain high amounts of fillers, heavy metals, and is formulated without evidence-based dosages. |
Serving Size: 1 scoop;
Servings Per Container: 30;
Bottle Color: White;
Product Size: 5.5oz;
Lid Color: White
CAUTION: Do not exceed the recommended dose. Pregnant or nursing mothers, children under the age of 18, and individuals with a known medical condition should consult a physician before using this or any dietary supplement.
KEEP OUT OF REACH OF CHILDREN.
DO NOT USE IF SAFETY SEAL IS
DAMAGED OR MISSING.
STORE IN A COOL, DRY PLACE.
* These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure or prevent any disease.
Sources:
- 97. Carr, A. C., & Maggini, S. (2017). Vitamin C and Immune Function. Nutrients, 9(11), 1211. https://doi.org/10.3390/nu9111211
- 98. DePhillipo, N. N., Aman, Z. S., Kennedy, M. I., Begley, J. P., Moatshe, G., & LaPrade, R. F. (2018). Efficacy of Vitamin C Supplementation on Collagen Synthesis and Oxidative Stress After Musculoskeletal Injuries: A Systematic Review. Orthopaedic journal of sports medicine, 6(10), 2325967118804544. https://doi.org/10.1177/2325967118804544
- 318. Leffa, D. D., da Silva, J., Daumann, F., Dajori, A. L., Longaretti, L. M., Damiani, A. P., de Lira, F., Campos, F., Ferraz, A., Côrrea, D. S., & de Andrade, V. M. (2014). Corrective effects of acerola (Malpighia emarginata DC.) juice intake on biochemical and genotoxical parameters in mice fed on a high-fat diet. Mutation research, 770, 144–152. https://doi.org/10.1016/j.mrfmmm.2013.11.005
- 51. van de Lagemaat, E. E., de Groot, L., & van den Heuvel, E. (2019). Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients, 11(2), 482. https://doi.org/10.3390/nu11020482
- 52. Romain, M., Sviri, S., Linton, D. M., Stav, I., & van Heerden, P. V. (2016). The role of Vitamin B12 in the critically ill–a review. Anaesthesia and intensive care, 44(4), 447–452. https://doi.org/10.1177/0310057X1604400410
- 53. Shipton, M. J., & Thachil, J. (2015). Vitamin B12 deficiency – A 21st century perspective . Clinical medicine (London, England), 15(2), 145–150. https://doi.org/10.7861/clinmedicine.15-2-145
- 172. Maywald, M., Wessels, I., & Rink, L. (2017). Zinc Signals and Immunity. International journal of molecular sciences, 18(10), 2222. https://doi.org/10.3390/ijms18102222
- 173. Wessels, I., Rolles, B., & Rink, L. (2020). The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Frontiers in immunology, 11, 1712. https://doi.org/10.3389/fimmu.2020.01712
- 231. Ulbricht, C., Basch, E., Cheung, L., Goldberg, H., Hammerness, P., Isaac, R., Khalsa, K. P., Romm, A., Rychlik, I., Varghese, M., Weissner, W., Windsor, R. C., & Wortley, J. (2014). An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the Natural Standard Research Collaboration. Journal of dietary supplements, 11(1), 80–120. https://doi.org/10.3109/19390211.2013.859852
- 232. Hawkins, J., Baker, C., Cherry, L., & Dunne, E. (2019). Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complementary therapies in medicine, 42, 361–365. https://doi.org/10.1016/j.ctim.2018.12.004
- 233.Tiralongo, E., Wee, S. S., & Lea, R. A. (2016). Elderberry Supplementation Reduces Cold Duration and Symptoms in Air-Travellers: A Randomized, Double-Blind Placebo-Controlled Clinical Trial. Nutrients, 8(4), 182. https://doi.org/10.3390/nu8040182
- 234.Krawitz, C., Mraheil, M. A., Stein, M., Imirzalioglu, C., Domann, E., Pleschka, S., & Hain, T. (2011). Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC complementary and alternative medicine, 11, 16. https://doi.org/10.1186/1472-6882-11-16
- 90. Boyle, N. B., Lawton, C., & Dye, L. (2017). The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review. Nutrients, 9(5), 429. https://doi.org/10.3390/nu9050429
- 91. Verma, H., & Garg, R. (2017). Effect of magnesium supplementation on type 2 diabetes associated cardiovascular risk factors: a systematic review and meta-analysis. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association, 30(5), 621–633. https://doi.org/10.1111/jhn.12454
- 36. Khaing, W., Vallibhakara, S. A., Tantrakul, V., Vallibhakara, O., Rattanasiri, S., McEvoy, M., Attia, J., & Thakkinstian, A. (2017). Calcium and Vitamin D Supplementation for Prevention of Preeclampsia: A Systematic Review and Network Meta-Analysis. Nutrients, 9(10), 1141. https://doi.org/10.3390/nu9101141
- 37. Courteix, D., Jaffré, C., Lespessailles, E., & Benhamou, L. (2005). Cumulative effects of calcium supplementation and physical activity on bone accretion in premenarchal children: a double-blind randomised placebo-controlled trial. International journal of sports medicine, 26(5), 332–338. https://doi.org/10.1055/s-2004-821040
- 77. Chang, S. W., & Lee, H. C. (2019). Vitamin D and health – The missing vitamin in humans. Pediatrics and neonatology, 60(3), 237–244. https://doi.org/10.1016/j.pedneo.2019.04.007
- 78. Zhang, Y., Fang, F., Tang, J., Jia, L., Feng, Y., Xu, P., & Faramand, A. (2019). Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ (Clinical research ed.), 366, l4673. https://doi.org/10.1136/bmj.l4673
- 79. Pilz, S., Frisch, S., Koertke, H., Kuhn, J., Dreier, J., Obermayer-Pietsch, B., Wehr, E., & Zittermann, A. (2011). Effect of vitamin D supplementation on testosterone levels in men. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 43(3), 223–225. https://doi.org/10.1055/s-0030-1269854
- 262. Filippini, T., Violi, F., D’Amico, R., & Vinceti, M. (2017). The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis. International journal of cardiology, 230, 127–135. https://doi.org/10.1016/j.ijcard.2016.12.048
Gordon –
Fast Shipping Item received as described in excellent condition Very happy with this seller and will definitely buy again.
Bren –
Package arrived on time, in good condition. Well packed.